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Abstract

Fission excitation functions have been measured for a chain of neighboring compound nuclei,

from 207Po to 212Po. We present a new analysis which provides a determination of the fission

barriers and ground state shell effects with nearly spectroscopic accuracy. The improved accuracy

achieved in this analysis may lead to a future detailed exploration of the saddle mass surface and

its spectroscopy. The sensitivity of the fission probabilities on shell effects extends to excitation

energies of 150 MeV and negates recent claims for the disappearance of shell corrections due to

collective effects.

PACS numbers: 24.75.+i, 25.85.Ge
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The study of nuclei under extreme conditions (spin, isospin, temperature, and deforma-

tion) is a major theme of nuclear physics. Fission is a fertile testing ground of nuclei under

extreme deformation for several reasons.

A fissioning nucleus allows us to explore the most extreme nuclear deformation associated

with a stationary point, well beyond that of super- or even hyper-deformation. The saddle

configuration is a bottleneck in phase space, a “stationary” point at which the probability

to fission is determined. It is also able to sustain its own spectroscopy in the N − 1 modes

orthogonal to the fission mode. This spectroscopy begins with the saddle mass (Ms) which

is simply the ground state mass (Mgs) plus the experimental fission barrier (Bf ) [1]. The

physics describing the saddle point ground and excited states should be similar to that of

a deformed nucleus. Initial attempts at saddle point spectroscopy were made earlier in the

low barrier actinide regions [2], but could not be extended to the much higher barriers of

lighter elements.

Historically, experimental fission barriers in lighter nuclei have been disproportionately

useful in fixing the adjustable parameters in theories of nuclear masses and deformabilities

(such as the liquid drop model).

Shell effects in the ground state and at the saddle, pairing, congruence energy [4], single

particle level densities are examples of quantities that should be immediately accessible when

studying saddle properties.

Yet as important a testing ground as fission would seem to be, so far fission barriers and

ground state shells have been measured only anecdotally and with only moderate accuracy

[3]. The lack of precise and systematic data measured over a wide range of excitation energy

has left the expectations mentioned above largely unfulfilled. In this letter we provide new

precision data, systematically measured for an isotopic chain of Po compound nuclei, cover-

ing a large excitation energy range. We also describe a new analysis technique which results

in fission barriers and ground state shell corrections with nearly spectroscopic accuracy.

The fission data were taken at the 88-Inch Cyclotron of the Lawrence Berkeley Na-

tional Laboratory. We measured with high precision the fission excitation functions of the

neighboring compound Po nuclei 207−212Po produced in 3He- and 4He-induced reactions on

isotopically enriched Pb targets (see Fig. 1).

We chose these particular reactions for several reasons. First, the shell corrections and

fission barriers in the Pb region are large and easy to measure. Second, the light ion induced
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FIG. 1: The fission cross section (solid and open symbols) are plotted as a function of excitation

energy for the indicated nuclei. The errors are smaller than the symbols. The dashed curve

represents the first chance fission cross section. The dotted curves represent the second and higher

chance fission cross sections. The solid curve is their sum, the total fission cross section. The left

column contains α-induced reactions. The right contains 3He-induced reactions. The fusion cross

sections (cross symbols) are described in the text.

reactions have only modest amounts of angular momentum (< 25h̄). The relevant rotational

energies are small, ≈ 2 MeV for a spherical shape and ≈ 0.8 MeV for the saddle shape of a

Po nucleus with an angular momentum of 20h̄. And third, there are four stable isotopes of

Pb from which one can make clean targets.

Fission events were identified in two large area parallel plate avalanche counters. The

experimental details are described in ref. [5]. The statistical errors of the measured fission

cross sections σf are smaller than 2% for excitation energies above 50 MeV. And since

the fissioning systems for different beam-target combinations were measured with the same

detector setup, the relative systematic errors are estimated to be small (∼ 4%).
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The solid and open symbols in Fig. 1 represent the fission cross section data for neigh-

boring compound nuclei. The 4He-induced reactions are shown in the left column and the

3He-induced reactions are shown in the right. In two cases (A = 211, 210), we have overlap

points where the same compound nucleus was formed via two different entrance channels.

The fission cross sections cover seven orders of magnitude for these reactions.

To determine the fission probability, we use standard transition state theory as applied

in ref. [5] and calculate the fission decay width

Γf =
1

2πρ(E)

∫

ρf (E − Bf − ε)dε (1)

where ρf is the level density at the saddle, ε is the kinetic energy associated with the fission

channel, and ρ is the level density of the compound nucleus.

We neglect charged particle emission, since fission following proton or α particle emission

is known to be small for these reactions [6]. The width for neutron emission (the only other

exit channel assumed in our analysis) is

Γn =
2mR2g′

h̄2

1

2πρ(E)

∫

ερd(E − Bn − ε)dε. (2)

where m denotes the neutron mass, R is the radius and ρd is the level density of the daughter

nucleus after neutron emission, g′ is the spin factor (=2), Bn is the neutron binding energy,

and ε is the kinetic energy of the neutron.

Using for simplicity the Fermi gas level density and taking into account the angular

momentum a fissioning nucleus may have, Eqs. (1) and (2) can be evaluated and their ratio

taken [7] so that Γf/Γn is

Γf

Γn

=
Tf − 1

2af

K
(

T 2
d − 3

2ad
Td + 3

4a2

d

)

ρf(E − Bf − Es
r)

ρ(E − Bn − Egs
r )

(3)

where af and Tf denote the level density parameter and temperature at the saddle, ad and Td

denote the level density parameter and temperature of the residual daughter after neutron

emission, Es
r and Egs

r denote the rotational energy of the system at the saddle point and

the energy of the rotating ground state and K = 2mR2g′/h̄2. The ground state and saddle

moments of inertia were taken from Sierk [8].

Using for simplicity the Fermi gas level density, the ratio of the level densities in Eq. (3)

becomes
ρf (E −Bf − Es

r)

ρ(E − Bn − Egs
r )

∝ e2
√

af (E−Bf−Es
r)−2

√
ad(E−Bn−E

gs
r ). (4)
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For nuclei with strong shell effects, the approximation ρ(E − Bn − Egs
r ) ∝

exp(2
√

ad(E −Bn − Egs
r )) becomes a poor one. The shell effects of a nucleus affect its

level density in a rather complicated way at low energies. But at high enough excitation

energies, we can use the asymptotic form ρ(E) ∝ exp(2
√

a(E + ∆shell)) [9]. This approx-

imation is particularly useful for Γn where the excitation energy is always at least 5 MeV

above the fission barrier (i.e., approximately 25-30 MeV). On the other hand, at the saddle

no shell effects are expected much larger than 1 MeV.

For the daughter nucleus produced by neutron emission, the level density takes the asymp-

totic form:

ρd(E − Bn − Egs
r ) ∝ exp

(

2
√

ad(E −Bn − Egs
r + ∆n−1

shell)
)

(5)

where ∆n−1
shell is the ground state shell effect of the daughter nucleus after neutron emission.

For the saddle level density (ρf ), the problems should be far less serious. On the one

hand, the large deformations at the saddle point imply small shell effects there. On the

other hand, topologically the saddle point should be located between regions of positive and

negative shell effects, thus substantially limiting the saddle point shell corrections [10].

Pairing affects the level density in a manner similar to the shell effects. The level den-

sity is evaluated at an energy shifted by the condensation energy ∆Ec. The condensa-

tion energies are calculated separately for protons and neutrons. For an even-even nu-

cleus, ∆Ec = 1
2
gn∆2

n + 1
2
gp∆

2
p, where gn = (3/π2)an, gp = (3/π2)ap, and ad = an + ap =

N/8.5 MeV−1 + Z/8.5 MeV−1 = A/8.5 MeV−1. In general,

∆Ec =
1

2
gn∆

2
n +

1

2
gp∆

2
p −mod(N, 2)∆n −mod(Z, 2)∆p. (6)

The ground state gap parameters for protons (∆p) and for neutrons (∆n) were chosen to be

∆p = ∆n =
12MeV√

A
. (7)

At the saddle, the gap parameter for the neutrons(∆f
n) was taken to be ∆f

n =

S exp
(

−1/gf
nG

)

where S and G were chosen to reproduce the ground state values (Eq. (7))

and gf
n = (3/π2)(N/A)af . A similar expression for ∆f

p can be calculated for protons using

gf
p = (3/π2)(Z/A)af . Consequently the condensation energy at the saddle we express as

∆Es
c =

1

2
gf

n(∆f
n)2 +

1

2
gf

p (∆f
p)

2 −mod(N, 2)∆f
n −mod(Z, 2)∆f

p (8)
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FIG. 2: The shell corrections from the fission fits (solid circles) and the shell corrections from

Möller et al. [11] are plotted as a function of mass number for Po. The residual difference between

the two data sets is shown in the upper panel.

The resulting expression for Γf/Γn is

Γf

Γn

∝ e
2

√

af(E−Bf−Es
r−∆E

f
c )−2

√

ad(E−Bn−E
gs
r +∆n−1

shell
−∆Ec)

(9)

We further assume that the fission barrier can be broken into two parts: Bf = Bmacro −

∆shell where for the macroscopic part (Bmacro) we take a scaled value of the Thomas-Fermi

predictions [1], and the microscopic part is the ground state shell correction.

The expression for Γf/Γn (Eq. (9)) has four free parameters: Bmacro, ∆shell of the fissioning

system, ∆n−1
shell of the 1 neutron out daughter nucleus, and the ratio of the level density

parameters af/ad.

To make use of this description of Γf/Γn, we write the total fission cross section as

σf =
∑

i=0

σ
(i)
f =

l=lmax
∑

l=0

∑

i=0

σlP
(i)
f (E, l) (10)

where σ
(i)
f is the fission cross section after i neutrons have been emitted, σl is the angular

momentum distribution of the fusion cross section ((2l + 1)πλ2), lmax comes from the fusion

cross sections (crosses in Fig. 1) and P
(i)
f (E, l) is the fission probability after the emission

of i neutrons from a compound nucleus of initial angular momentum l and initial energy E.
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The fission probability at each “step” i can be written as

P
(i)
f (E, l) =

1

1 + Γn

Γf
(E, l, i)

(11)

where the angular momentum dependence comes in through the rotational energy depen-

dence of Γf/Γn and the “multiple-chance” energy dependence is accounted for on average by

assuming that with the emission of each neutron, the excitation energy drops by 2T + Bn.

With Eqs. (3), and (9)-(11), we are prepared to fit any chain of neighboring isotope fission

data. However, a remark regarding the fusion cross sections is in order. If we use the Bass

model description of the fusion cross sections [12] and fit the fission cross sections with the

method outlined above, we get reasonable fits to the α-induced reactions, but somewhat

poorer fits for the 3He-induced reactions. The Bass model may not describe well both the

3He- and 4He-induced fusion cross sections. Therefore, we have chosen to leave the fusion

cross section as a free parameter constrained to the form:

σ0 =
E2 − V

Ecm

πR2 tanh
(

Ecm − V

E2 − V

)

(12)

where V represents the fusion barrier, πR2 is a geometric cross section and E2 = 1/2µv2
rel,

the energy above which the fusion cross section effectively falls like 1/Ecm. Note that in the

low energy limit (Ecm ≈ V ), Eq. (12) goes to

σ0 = πR2
(

1−
V

Ecm

)

(13)

and at high energies σ0 goes to

σ0 =
E2 − V

Ecm

πR2. (14)

With this choice of fusion cross sections we are ready to proceed and fit the fission cross

sections. Note that this new fitting technique requires a self-consistent global description of

the data. For example, the third chance fission for nucleus A uses the same fission barrier as

the second chance fission of nucleus A− 1, which is the same barrier as first chance fission

of nucleus A− 2.

The total fission cross sections calculated using Eq. (10) are shown as the solid lines in

Fig. 1. The dashed line represents “first-chance” fission. The dotted lines represent second,

third and higher chance fission yields.

To fit all of the systems in Fig. 1, eleven free parameters were taken: three to describe the

fusion cross sections (vrel and one R for each projectile type, see Eq. (12)), one to describe
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FIG. 3: The shell corrections extracted from the fission fits (solid circles) are plotted as a function

of mass number. The open circles represent the ground state shell correction estimated by Möller

et al. [11]. The solid line is the macroscopic barrier extracted from the fission fit and the dashed

line is a Thomas-Fermi estimate [1]. The difference between the the macroscopic barrier Bmacro

and the shell correction ∆shell is the fission barrier Bf .

the A dependence of the macroscopic barriers, one to describe the average value of af/ad,

and one each to describe the six shell corrections for the 1n daughter channel of the six

fissioning systems (the shell correction for 212Po was fixed at the Möller value [11]).

The extracted ∆shell values are shown by the solid circles in Fig. 2. They show a clear

shell closure at A = 210 (N = 126). Furthermore, there is a remarkable agreement between

the values from the present fission analysis and those determined by Möller et al. in fitting

the ground state masses [11] (open squares). The mean deviations are smaller than 200 keV

(upper panel of Fig 2).

The agreement is remarkable, especially compared to earlier attempts [3] (fitting one

compound system at a time using a “first-chance-emission only” formalism) where the un-

certainties were typically ±1.5 MeV. The errors from the present analysis suffer from a lack

of exact knowledge of the fusion cross section, a value of af/ad, and Bmacro. Because these

three parameters are so strongly correlated, the chi square space of the fit is extremely flat

and the resulting error matrix is not positive-definite. Consequently, errors from the full fit

cannot be assigned. However, if values for the fusion cross section, af/ad, and Bmacro are
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“frozen” to their best values and the fits repeated with only the shell corrections free, the

resulting calculated errors are less than 10 keV.

Furthermore, the extraction of shell corrections from the fission fits offers an alternative

way to measure shell effects which is purely local, i.e. it does not depend on the (assumed)

liquid drop background.

These shell effects modify the fission probability according to Eq. (9) up to the highest

excitation energies (≈ 150 MeV). This observation is at variance with recent claims of loss

of shell structure at high energies [13].

The extracted fission barriers are shown in Fig. 3 as a difference between the shell cor-

rection and the macroscopic barriers. The macroscopic barrier from the fit is given by the

solid line and is nearly indistinguishable from the Thomas-Fermi prediction (solid line) [1].

With data at other fissilities, it should be possible to explore systematic changes in the

macroscopic barriers, in particular the shape changes of the congruence energy predicted by

Myers and Swiatecki [4].

The ratio af/ad has an average value of ≈ 1.02. With additional data at other values of

fissility, it should be possible to study the surface area dependence of af [14].

In summary, we have reported new precision fission data, and we have extracted accurate

fission barriers and ground state shell corrections with a new method of globally fitting fission

data for an isotopic chain of nuclei. An accurate description of the saddle mass configuration

may open avenues that have been explored extensively for ground state masses. For example,

it may soon be possible to address pairing corrections at the saddle, the surface area (or

fissility) dependence of both the saddle level density and the macroscopic barrier, and even

shell effects at the saddle in a quantitative fashion. As more data become available, especially

at the new radioactive beam facilities, the techniques presented here may prove valuable for

an accurate description and understanding of the fission “saddle-mass” surface.
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